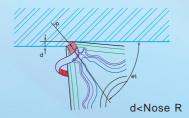
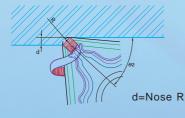
KORLOY TECH-NEWS

New Concept on Turning Operations Harmony-Series

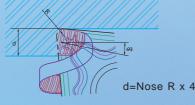


Necessary of Chip-breaker

- 1. Problems in Turning Operation: The long chips can be bound on tools and holders when we cut a work piece in continuous cutting operations. It means that we have to spend additional time to remove them and it is not efficient and decrease our productivity. Also when we use the negative insert, the relief angle will be minus value. It means the cutting resistance will be increased and it makes decrease of tool life.
- 2. Function of Chip-breaker in Turning Operations
 - ① It makes the shorter chip
 - ② It decrease cutting resistance by bigger relief angle
 - ③ It decease the Non-cutting operation time such as removing of chips from your machine.


Features of H - Series

- 1. The H Series are designed with HARMONY concept. We carefully research chip flow directions as per variations of depth-of-cuts and designed the Chip-breakers having excellent properties such as better chip breaking, decreased cutting resistance and stronger cutting edge. And it ensures improving of tool life, cutting quality and productivity.
- 2. The cutting mechanism of H series is the separation of chip breaker as finish, medium cutting and roughing to meet the variation of depth-of-cut. The following shows HM chip-breaker's action in variation of depth-of-cut.



- Depth-of-cut 0.5~1.5mm(0.02~0.06inch), it is in finish or medium-finish cutting range.
- Main finish chip-breaker breaks the chip and sub finish chip-breaker controls the chip flow.

* When the depth-of-cut is same as Nose-R.

- Depth-of-cut 0.8~2.0mm(0.03~0.08inch), it is in medium-finish cutting range.
- Main and sub finish chip-breaker breaks the chip well.

* When the depth-of-cut is 2~4 times of Nose-R.

- Depth-of-cut 1.5~4.5mm(0.06~0.18inch), it is in medium cutting range.
- Roughing chip-breaker breaks the chip.


* When the depth-of-cut is 5~8 times of Nose-R.

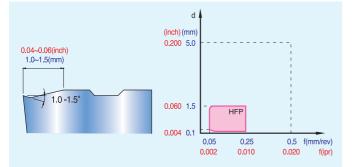
- Depth-of-cut 4.0~6.0mm(0.16~0.24inch), it is in medium-rough cutting range.
- Side of roughing chip-breaker breaks the chip.

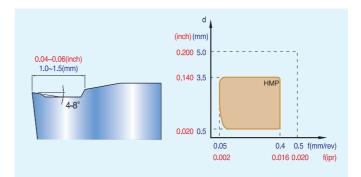
d=Nose R x 6.5

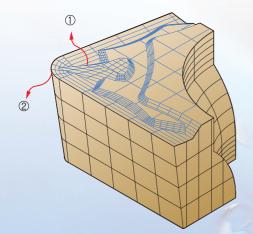
STAINLESS & ALUMINUM

١	Vork-pie	се		Recor	nme	end	led	Gra	Ides	5	
IS) Mater	rial	Grade	Wear F	Resis	tano	ce ◄	-	>	Tou	ghness
	Water		Clade	01	1()	2	0	30	C	40
Р	Carbon Alloy S		Coated Carbide	NC31	0	NC	3015	NC:	3020	Ν	IC330
	7 dioy C		Cermet	CT10			CN	200			
M	Stainle Stee		Coated Carbide			C9020 C3020)				C90 C23	
к	Cast in	ons	Coated Carbide	NC30	5K		NC	315	K		

				Cutting (Condition			Work	-piece	9
Туре	C/B	Application	Depth-of-cut (d)	Feed(f)	Depth-of-cut (d)	Feed(f)	Steel	Stainles Steel	Castiron	AL
	HU	Ultra Fine - finish	0.1~1.0	0.03~0.30	0.004~0.04	0.0012~0.012	•			
	HW	WIPER	0.3~2.0	0.10~0.50	0.012~0.08	0.004~0.02				
	HF	Finish	0.3~2.5	0.05~0.35	0.012~0.10	0.002~0.014	•			
Nega Type	HC	Medium-finish	0.8~4.0	0.08~0.40	0.032~0.16	0.003~0.016	•	•	•	
	НМ	Medium	1.0~5.0	0.10~0.50	0.04~0.20	0.004~0.02	•		•	
	HR	Roughing	2.5~7.0	0.25~0.65	0.10~0.28	0.01~0.026	•		•	
	нн	Roughing	4.0~1.3	0.45~1.1	0.16~0.52	0.018~0.04	•			
Nega	HA	Medium-finish	0.5~2.5	0.05~0.3	0.02~0.10	0.002~0.012		•		•
Туре	HS	Medium-Cutting	1.0~4.0	0.1~0.4	0.04~0.16	0.004~0.016		•		
Posi	HFP	Finish	0.1~1.5	0.05~0.30	0.004~0.06	0.002~0.012	٠	•		
Туре	HMP	Medium	0.5~3.5	0.10~0.40	0.02~0.14	0.004~0.016	٠	•	•	




(Medium-finish,

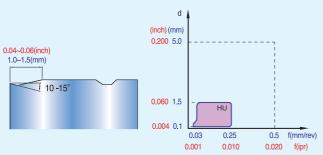

Positive type, HFP (Fine finish, Finish area)

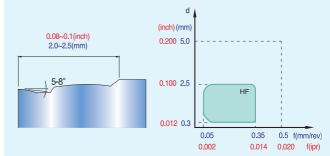
0

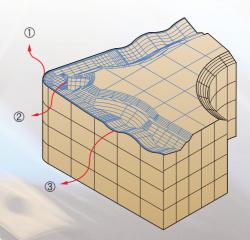
- ① Excellent and stable chip control due to 2 step chip- breaker in fine finish area
- 2 Excellent surface finish, cutting performance due to the sharp cutting edge in low cutting resistance applications (Grinding process applied on sides of insert)
- * Main work-piece materials: Steels, Stainless steels

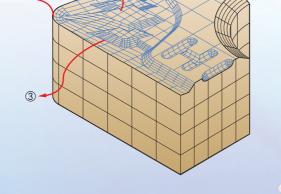
① Chip control sensor ensures stable chip removal in low depth-of-cut and efficient chip breaking.

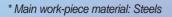
(2)


3


- 2 Ideal land relief angle design ensures better cutting performance, surface finish quality and chip breaking.
- ③ Reinforced non-cutting edge and land part ensures good and stable operation in the sudden change of depth-of-cut.

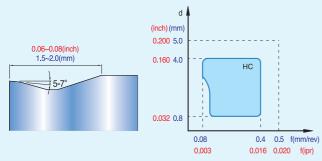

* Main work-piece materials : Steels, Stainless steels, Cast irons

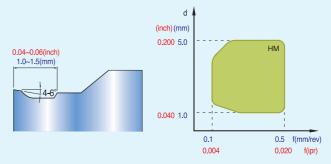


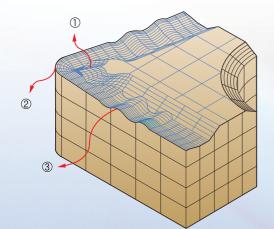


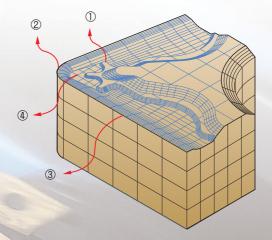
2

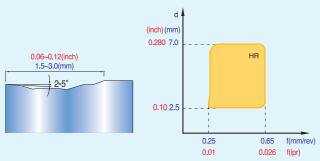
1

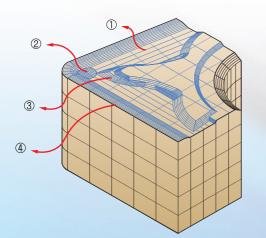

- ① Excellent surface finish, cutting performance due to the sharp cutting edge In low cutting resistance applications (Grinding process applied on sides of insert)
- ② Special figure designed main chip breaker ensures stable chip control in the ultra find finish operations.
- ③ Sub chip-breaker ensures good chip breaking in low depthof-cut and stable operation in sudden change of depth-of-cut.



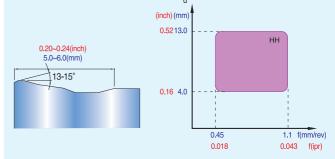

- Ideal land relief angle design ensures better surface finish quality and lower cutting resistance.
- ② Special figure design ensures stable chip control in finish operations.
- ③ Concave and convex design ensures excellent chip control in various change of depth-of-cut.
- * Main work-piece materials: Steels, Stainless steels

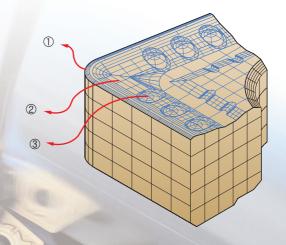



- ① Unique figure design ensures stable chip control in small depth-of-cut and good chip breaking in large depth-of-cut.
- ② Ideal land relief angle design ensures better surface finish quality and lower cutting resistance.
- ③ Concave and convex design ensures excellent chip control in various change of depth-of-cut such as copy machining.
- * Main work-piece material: Steels, Stainless steels



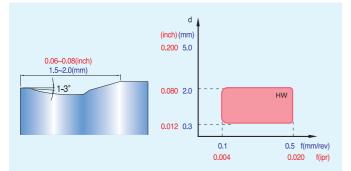
- ① 3 Chip-control-sensors design, it can be applied at the wide application range from medium-finish to medium-roughing
 ② operations.
- Ideal land relief angle design ensures better cutting perform-③ ance and lower cutting resistance.
- Stronger cutting edge adopting of large land width on main cutting edge part, it is able to be applied at intermittent cutting or bad conditioned work piece.
- ④ Special design on chip pocket part ensures excellent tool life at high speed cutting, high feed cutting and CNC machining.

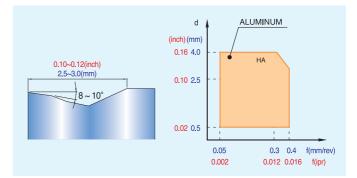

* Main work-piece: Steels, Stainless steels, Cast irons

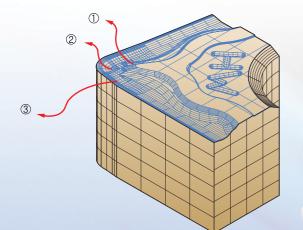


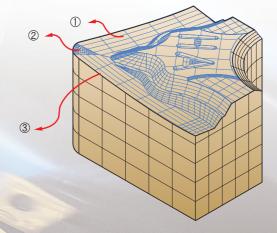
- ① Superior chip-evacuation thanks to wide chip-groove design during high depth-of-cut and high feed machining
- ② Good edge strength during intermittent machining & superior chip-evacuation during ultra fine finishing operation thanks to enhanced edge strength
- ③ Good chip-curl induced by 2-step shape of chip breaker design and reduced chip-evacuation resistance during highspeed and high-feed machining
- ④ Low-resistance edge-line made by having an land-angle reduces cutting resistance
- * Main work-piece materials : Steels, Cast irons

- ① Having strong toughness doesn't cause chipping and damages on edge during high depth-of-cut, high-feed and severe intermittent machining thanks to nega-land design
- ② Reduced cutting-resistance as having good chip-evacuation resulted from small rake-angle
- ③ Minimization of frictional heat generation as reducing friction size between chip and inserts during cutting is making long toollife
- * Main work-piece materials : Steels, Cast irons



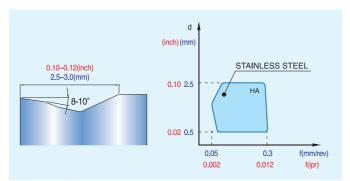

Negative type, HW (Wiper Inserts)

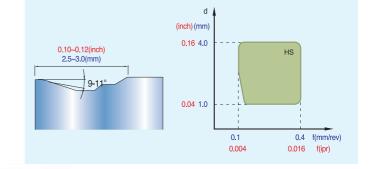


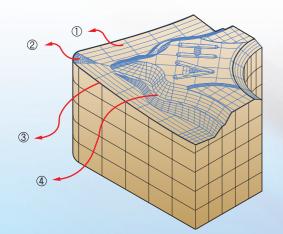

Negative type, HA (Aluminum)

- ① Special shape design of chip-breaker ensures superior chip control in the low depth-of-cut
- ② Stable performance by special shape design at chip pocket in high-speed, high-feed
- ③ Having superior fine finish during machining because it is composed of recess type of edge and wiper type of edge
- * Main work-piece materials : Steels

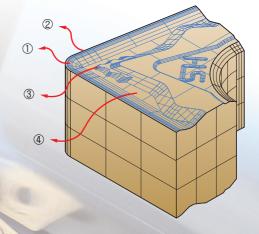
- ① Good chip-evacuation by design of wide chip-groove and high rake-angle prevents build-up-edge and generates small cutting-resistance
- ② Enhanced edge strength by enhanced edge shape prevents chipping, friction of edge and makes chip-evacuation superior during ultra fine finish machining
- ③ Enable to low-depth of-cut by sharp edge and having superior fine finish
- * Main work-piece materials : Aluminum, Soft steels, Stainless steels


Negative type, HA (Stainless steel)




Negative type, HS

(Exclusive for


. Stainless steel)

- ① Good chip-evacuation by design of wide chip-groove and high rake-angle prevents build-up-edge and generates small cutting-resistance
- ② Enhanced edge strength by enhanced edge shape prevents chipping, friction of edge and makes chip-evacuation superior during ultra fine finish machining
- ③ Enable to low-depth of-cut by sharp edge and having superior fine finish
- ④ 2-step shape of chip-breaker design induces good chip-curl and reduces chip-evacuation resistance during high-speed and high-feed machining
- * Main work-piece materials : Aluminum, Soft steels, Stainless steels

- ① Superior fine finish and wear-resistance by low-resistance design of high-land rake angle as chip breaker exclusive for stainless steels
- ② Reduced chipping at boundary from low depth-of-cut up to high depth-of-cut by land width and change of angle at sides
- ③ Preventing chipping & damages as enhancing strength of edge on high-depth-of-cut and high-feed having increasing cutting load
- ④ Reducing chip evacuation resistance during high-depth-ofcut, high-feed as forming wide chip pocket

* Main work-piece materials : Stainless steels, Difficult-tocut steels

Recommendation for General steels

■ Work-piece material : DIN(CK45, CK55, 42CrMo4 and etc.) AISI(1045, 1055, 4130, 4140 and etc.) ■ Hardness : 180 ~ 260HB

W	ork-piece	Sel	ect Chip-bre	aker and Gr	ade		Select Sh	ape of Inse	rt as per W	ork-piece	
Operation	Depth-of -cut	Chip- breaker	Feed	Grade	Speed	80°	80°	55°	60°	35°	90°
ğ	mm(inch)	First Choice	mm/rev(ipr)	Grade	m/min <mark>(sfm)</mark>	(NEGA) CN□□	(NEGA) WN□□	(NEGA) DN□□	(NEGA) TN□□	(NEGA) VN□□	(NEGA) SN□□
	0.3 ~ 1.0 ~ 2.0 0.012 ~ 0.040 ~ 0.080 WIPER	HW	0.10 ~ 0.30 ~ 0.50 0.004 ~ 0.012 ~ 0.020	NC310 NC3020	300 980 250 820						
Finish Cuttings	0.2 ~ 0.5 ~1.0 0.008 ~ 0.020 ~ 0.040 Ultra Fine - finish		0.05 ~ 0.10 ~0.20 0.002 ~ 0.004 ~0.008	CC105 CN20	190 623 160 525			E Y			
LLL.	0.5 ~ 1.0 ~ 2.0 0.020 ~ 0.039 ~ 0.098 Finish	₽ E	0.08 ~ 0.15 ~0.30 0.002 ~ 0.004 ~ 0.008	CN200 NC310 NC3015 NC3020	180 590 220 722 200 660 190 623						
Medium Cuttings	0.8 ~ 1.5 ~ 3.5 0.031 ~ 0.059 ~ 0.138 Medium-finish	£	0.10 ~ 0.20 ~0.35 0.004 ~ 0.008 ~ 0.014	NC310 NC3020 NC3015 NC330	210 689 180 590 190 630 160 525						
Medium	1.5 ~ 2.5 ~ 5.0 0.059 ~ 0.098 ~ 0.197 Medium	H	0.15 ~ 0.25 ~ 0.50 0.006 ~ 0.010 ~ 0.020	NC310 NC3015 NC3020 NC330	200 656 180 558 170 560 150 492			LÕI			
Roughing	2.5 ~ 4.5 ~ 7.0 0.100 ~ 0.180 ~ 0.280 Roughing	HR	0.25 ~ 0.45 ~ 0.65 0.010 ~ 0.018 ~ 0.026	NC3015 NC3020 NC330	170560160525140460						
НЕАVY	4.0 ~ 8.0 ~ 13 0.160 ~ 0.320 ~ 0.520 Roughing		0.45 ~ 0.70 ~1.1 0.018 ~ 0.028 ~ 0.040	NC3015 NC3020 NC330	120 390 100 330						
	mm(inch)	First Choice	mm/rev(ipr)	Grade	m/min <mark>(sfm)</mark>	(POSI) CC⊡T	(POSI) WC⊟T	(POSI) DC⊡T	(POSI) TC⊟T	(POSI) VC⊟T VB⊟T	(POSI) SC⊟T
sh Cuttings	0.1 ~ 0.5 ~ 1.5 0.004 ~ 0.020 ~ 0.059	HFP	0.05 ~ 0.15 ~0.25 0.002 ~ 0.006	CC105 NC310 NC3020	200 656 220 722 180 590	101				_07	

		~ 0.010	NC3015	190	627			
- 1.5 ~ 3.5 0.006 ~ i9 ~ 0.138 ledium	HMP	0.08 ~ 0.20 ~0.40 0.003 ~ 0.008 ~0.016	NC310 NC3020 NC3015 NC330	210 180 190 150	689 590 627 492			

* Advices

- 1. According to the work-piece material and depth-of-cut
 - 2> Choose the shape of insert as per work-piece
- 3> Choose the grade and decide feed and speed. Adjust factors by conditions from the first operation for the better productivity.
- 2. If the work-piece material is a soft steel or the Brinell hardness is less than 180,
- 1> Increase speed as 20% as the above,

1> Choose chip-breaker type

- 2> Increase feed as 20% as the above.
- 3. If the work-piece material is a mold steel or a hard steel or the Brinell hardness is 260~350,
1> Decrease speed as 20% as the above,2> Decrease feed as 10% as the above.

Recommendation for General steels

■ Work-piece material : DIN(X5CrNi1810, X5CrNiMo17122, X6CrNiNb1810 and etc.)

AISI(303, 316, 347, 202 and etc.)

■ Hardness : 135~ 185HB

Difficult-to-cut stainless steels, Austenite stainless steels and etc.

W	ork-piece	Sele	ect Chip-bre	aker and Gr	ade		Select Sh	ape of Inse	rt as per W	ork-piece	
Operation	Depth-of -cut	Chip- breaker	Feed	Grade	Speed	80°	80°	55°	60°	35°	90°
Q	mm(inch)	First Choice	mm/rev(ipr)	Grade	m/min <mark>(sfm)</mark>	(NEGA) CNMG	(NEGA) WNMG	(NEGA) DNMG	(NEGA) TNMG	(NEGA) VNMG	(NEGA) SNMG
Sbr	0.5 ~ 1.5 ~ 2.5	HA	0.03 ~ 0.15						A		
Finish Cuttings	0.020 ~ 0.060		~0.30	PC9030	170 560			587		637	
) hsin	~ 0.10		0.001 ~ 0.006	NC9020	190 <u>620</u>						
	Medium-finish		~ 0.012			··					
Cuttings	1.0 ~ 2.5 ~ 4.0	HS	0.10 ~ 0.25			(1 month)					
Cet	0.04 ~ 0.10		~0.40	PC9030	160 520			AST.			
Medium	~ 0.16	- Arca	0.004 ~ 0.010	NC9020	180 590						
Mec	Medium-Cutting		~ 0.016								
g	2.0 ~ 4.5 ~ 6.5	HM	0.20 ~ 0.40			(Read and Read and R					
Jhir	0.08 ~ 0.18 ~ 0.26	- Contraction	~0.60	PC9030	120 390	RAU					
toughing	Intermittent		0.008 ~ 0.016	NC9020	160 520						
2	Medium-Roughing		~ 0.024								

	mm(inch)	First Choice	mm/rev(ipr)	Grade	m/min <mark>(s</mark>	sfm)	(POSI) CC⊟T	(POSI) WC⊟T	(POSI) DC⊟T	(POSI) TC⊟T	(POSI) VC⊟T VB⊒T	(POSI) SC⊟T	
FINISN CUTTINGS	0.1 ~ 0.5 ~1.5 0.004 ~ 0.020 ~ 0.060 Finishing		0.05 ~ 0.10 ~0.20 0.002 ~ 0.004 ~ 0.008	PC9030 NC9020	-	560 620							
 ivieaium curtings	0.8 ~ 1.0 ~ 3.0 0.032 ~ 0.004 ~ 0.12 Medium Finishing		0.08 ~ 0.15 ~0.3 0.003 ~ 0.006 ~ 0.012	PC9030 NC9020		520 590							

* Advices

1.According to the work-piece material and depth-of-cut

- 1> Choose chip-breaker type
- 2> Choose the shape of insert as per work-piece
- 3> Choose the grade and decide feed and speed. Adjust factors by conditions of first operation for the better productivity.
- 2. If the work-piece material is a Martensite or Ferrite stainless steel,
 - 1> Increase speed as 20% as the above,
 - 2> Increase feed as 20% as the above
- 3. If the application requires the medium and general purpose area, we recommend our -GS chip-breaker with NC325S grade.
 - (Please see the 'Difficult-to-cut-material machining guide No:97' of KORLOY TECH-NEWS.

Recommendation for Cast iron

■ Work-piece material : DIN(GG10, GG15~GG35, GGG40~70 and etc.)

AISI(No 20B~ No 50B, 060-40-18, 80-55-06, 100-70-03)

■ Hardness : 150 ~ 300HB

W	/ork-piece	Sele	ect Chip-bre	aker and Gr	ade		Select Sh	ape of Inse	rt as per W	ork-piece	
Operation	Depth-of -cut	Chip- breaker	Feed	Grade	Speed	80°	80°	55°	60°	35°	90°
dO	mm(inch)	First Choice	mm/rev(ipr)	Grade	m/min <mark>(sfm)</mark>	(NEGA) CNMG	(NEGA) WNMG	(NEGA) DNMG	(NEGA) TNMG	(NEGA) VNMG	(NEGA) SNMG
Medium Cuttings	1.0 ~ 2.5 ~ 4.0 0.040 ~ 0.10 ~ 0.16 Medium-Cutting	HM	0.15 ~ 0.30 ~ 0.50 0.006 ~ 0.012 ~ 0.020	NC305K NC315K	300 1000 250 820			LÕI			
Roughing	2.5 ~ 4.5 ~ 7.0 0.10 ~ 0.18 ~ 0.28 Roughing	HR	0.25 ~ 0.45 ~ 0.65 0.010 ~ 0.018 ~ 0.026	NC305K <mark>NC315K</mark>	270 890 230 750						

	mm(inch)	First Choice	mm/rev(ipr)	Grade	m/min(sfm)	(POSI) CC⊟T	(POSI) WC⊟T	(POSI) DC⊟T	(POSI) TC⊟T	(POSI) VC□T VB□T	(POSI) SC⊟T
Medium Cuttings	0.5 ~ 1.5 ~ 3.0 0.020 ~ 0.06 ~ 0.12 Medium-Cutting	HMP	0.08 ~ 0.20 ~0.40 0.003 ~ 0.008 ~ 0.016	NC305K NC315K	250 750 220 720			ĮOJ			

* Advices

1. According to the work-piece material and depth-of-cut

1> Choose chip-breaker type

- 2> Choose the shape of insert as per work-piece
- 3> Choose the grade and decide feed and speed. Adjust factors by conditions from the first operation for the better productivity.

2. If the work-piece material is a soft steel or the Brinell hardness is less than 180,

- 1> Increase speed as 20% as the above,
- 2> Increase feed as 20% as the above.
- 3. If the work-piece material is a mold steel or a hard steel or the Brinell hardness is 260~350, 1> Decrease speed as 20% as the above,
 - 2> Decrease feed as 10% as the above.

						-	ems by ap	olied grade	and work-P	iece			Cemeted
Specific	ation			Chaol	(News Trees		Otoinlana Oto		-	ermet	Carbide
		NC310	NC3015	Steel NC3020	NC220	NC305K	Nega-Type) NC315K	NC325S	Stainless Ste NC9020		CN20	Steel	Aluminum H1
CNIN (C0000004		NC310	NC3015		NC330	NCJUDA	NC315K	INC3255	INC9020	PC9030	CINZU	CN200	HI
CNMG090304 CNMG090308	CNMG321 CNMG322			HF,HM HF,HM									
CNMG120404	CNMG322 CNMG431	HF,HC	HM	HA,HF,HC,HM	HC,HM		HM	HA	HA,HS,HM	HA,HS,HM	HM	HF,HC,HM	HA
CNMG120404 CNMG120408	CNMG431 CNMG432	HF,HC,HM	HF,HC,HM	HA,HF,HC,HM,HR	HC,HM,HR	HM,HR	HM,HR	HA,HC	HA,HS,HK	HA,HS,HM	HM	HF,HC,HM	HA
	CNMG432 CNMG433			HM,HR	HM,HR	HR	HM,HR		HS HS	HA, HS			ПА
CNMG120412 CNMG160608	CNMG542			HM	HM				по	по			
CNMG160612				HR	HR								
CNMG190608	CNMG642			HR	HR								
CNMG190612				HR	HR								
	CNMM643			HH	HH								
	CNMM644			HH	HH								
CNMM190624	CNMM646			HH	HH								
CNMM240724	CNMM856			HH	HH								
CNMM250924	CNMM866			HH	HH								
CINIVI/250924 CNMM250932				HH	HH								
		HF											
DNMG110404	DNMG331 DNMG332	пг		HF,HM HEHM									
DNMG110408 DNMG110412	DNMG332 DNMG333			HF,HM HM									
DNMG110412 DNMG150404	DNMG333 DNMG431	HF		HM HF,HM					HS	HS			HA
DNMG150404 DNMG150408	DNMG431 DNMG432	пг		HF,HM HF,HC,HM,HR	HM,HR			HA	HS	HS			HA
	DNMG432 DNMG433								HS	HS			ПА
DNMG150412 DNMG150604	DNMG433 DNMG441	HF,HM	HM		HM		HM		HS HA,HS,HM	HS HA,HS,HM	HM		
	DNMG441 DNMG442	HF,HM HF,HM		HA,HF,HC,HM	HIM HC,HM	HM	HM		HA,HS,HM HA,HS,HM	HA,HS,HM HA,HS,HM	HIVI HF,HM	HF,HC,HM HF,HC,HM	
DNMG150612	-	HF,HM	HF,HM	HA,HF,HC,HM	HM		HM				пг,пічі		
		HF,HIVI		HF,HC,HM	HIVI		HIVI		HS,HM				
SNMG090304	SNMG321			HM									
SNMG090308	SNMG322				HM		HM				1.15.4	LINA	110
SNMG120404	SNMG431		HM	HA,HF,HC				114	HA,HS	HA,HS,HM	HM	HM	HA
SNMG120408	SNMG432	HF,HM		HA,HF,HC,HM,HR	HM,HR	HM,HR	HM,HR	HA	HA,HS,HM	HA,HS,HM	HM	HM	HA
SNMG120412	SNMG433		HM	HM,HR	HM,HR	HR	HM,HR		HS,HM	HS,HM			
SNMG150612	SNMG543 SNMG643			HR	HR								
SNMG190612				HR	HR								
SNMG190616	SNMG644			HR	HR								
	SNMM643			HH	HH								
SNMM190616	SNMM644			HH	HH								
SNMM190624				HH	HH								
SNMM250724				HH	HH								
SNMM250732													
SNMM250924				HH	HH								
SNMM250932				HH	HH								
SNMM310924				HH	HH								
TNMG110304				HF									
TNMG110308	TNMG222												114
TNMG160404	TNMG331	HF,HC,HM	HF	HA,HF,HC,HM	HF,HM	HF,HM	1.15.4	110	HA,HS	HA,HS	HM	HF,HM	HA
TNMG160408	TNMG332	HF,HC,HM	HM	HA,HF,HC,HM	HC,HM	HM	HM	HA	HA,HS,HM	HA,HS,HM	HM	HF,HM	HA
TNMG160412				HM			HM		HS	HS			
		HM		HM HF.HC.HM.HR								HF	
TNMG220408				1 -1 1	HC,HM,HR								
TNMG220412				HM	HM								
TNMG270612				HR	HR								
TNMM220412				HH	HH								
	TNMM544			HH	HH								
TNMM270624	TNMM546			HH	HH								
TNMM330924	TNMM666			HH	HH				1.15.4	1.15.4			
VNMG160404		HF	HF	HF,HM			1.15.4		HM	HM		HF	
	VNMG332		HF	HF,HM			HM		HM	HM		HF	
VNMG160412				HM									
WNMG060404		HF		HF,HM	1.0.4								
WNMG060408		HM		HF,HM	HM							-	
WNMG060412				HM									
WNMG080404		HF		HA,HF,HM					HA,HS,HM	HA,HS		HF	HA
WNMG080408		HF,HM	HM	HA,HF,HC,HM,HR	HM,HR	HM,HR	HM,HR	HA	HA,HS,HM	HA,HS,HM			HA
WNMG080412		HM		HM	HM	1	HM	1	HS	HS	1	1	1

			Stoc	k-Managem	ent items b	y applied g	grade and v	vork-Piece(F	Posi-Type)			
Specification				(Coating					Ce	ermet	Cemeted Carbide
Specification			Steel		Cast Iron(I	Nega-Type)		Stainless Ste	el	S	Steel	Aluminum
	NC310	NC3015	NC3020	NC330	NC305K	NC315K	NC325S	NC9020	PC9030	CN20	CN200	H1
CCGT060202 CCGT21.50.5			HFP									
CCGT060204 CCGT21.51		HMP	HFP									
CCGT09T302 CCGT32.505			HFP									
CCGT09T304 CCGT32.51		HMP	HFP	HFP								
CCGT09T308 CCGT32.52		HMP	HFP		HMP							
CCMT060202 CCMT21.50.5			HMP									
CCMT060204 CCMT21.51	HMP		HMP	HMP		HMP	HMP	HMP	HMP		HMP	
CCMT060208 CCMT21.52			HMP	HMP				HMP	HMP			
CCMT09T304 CCMT32.51	HMP		HMP	HMP		HMP	HMP	HMP	HMP		HMP	
CCMT09T308 CCMT32.52	HMP		HMP	HMP		HMP	HMP	HMP	HMP		HMP	
CCMT120404 CCMT431			HMP	HMP		HMP		HMP				
CCMT120408 CCMT432	HMP		HMP	HMP	HMP	HMP		HMP	HMP			
DCGT070204 DCGT21.51			HFP									
DCGT11T304 DCGT32.51		HMP	HFP									
DCMT070202 DCMT21.50.5				HMP								
DCMT070204 DCMT21.51			HMP	HMP			HMP	HMP				
DCMT070208 DCMT21.52			HMP									
DCMT11T304 DCMT32.51	HMP		HMP	HMP	HMP	HMP	HMP	HMP	HMP		HMP	
DCMT11T308 DCMT32.52			HMP	HMP		HMP		HMP	HMP		HMP	
SCMT09T304 SCMT32.51			HMP			HMP						
SCMT09T308 SCMT32.52	HMP		HMP			HMP						
SCMT120408 SCMT412			HMP	HMP		HMP						
TCGT16T304 TCGT32.51			HFP									
TCMT110204 TCMT21.51	HMP		HMP	HMP				HMP	HMP		HMP	
TCMT110208 TCMT21.52			HMP	HMP								
TCMT16T304 TCMT32.51	HMP		HMP	HMP		HMP		HMP	HMP			
TCMT16T308 TCMT32.52	HMP		HMP	HMP		HMP		HMP	HMP			
VCGT110304 VCGT221			HFP									
VCGT160404 VCGT331			HFP									
VCGT160408 VCGT332			HFP									
VBMT110304 VBMT221			HMP									
VBMT160404 VBMT331			HMP									
VBMT160408 VBMT332			HMP									
VCMT160404 VCMT331			HMP		-							

• "H" Application Examples

			Cutting Condition	
Shape of work- piece	Work-piece (Material)	Insert	V:Speed(m/min) f:feed(mm/rev) d:Depth(mm)	Result
	Front piston (CK10 - DIN, 1010 - AISI)	CNMG 120408-HF CNMG 412-HF	V=180 f =0.35 d=0.135~0.4 V=590 f =0.0138 d=0.0053~0.0157	KORLOY 210 Competitor 180 0 100 200 EA
	T Shaft (CK45 - DIN, 1045 - AISI, Forged steel)	DNMG 150608-HC DNMG 442-HC	V=135 f=0.2 d=0.15 V=443 f=0.008 d=0.0059	KORLOY 230 Competitor 190 0 100 200 EA
	MX-BJ Out-side wheel (1050 - AISI)	CNMG 120412-HM CNMG 433-HM	V=300 f=0.3 d=3~4 V=984 f=0.0118 d=0.118~0.157	KORLOY 350 Competitor 330 0 150 300 EA
	Check Valve Body (Cast Steel)	SNMG 120408-HR SNMG 432-HR	V=170 f=0.15 d=1.5~3.0 V=560 f=0.006 d=0.06~0.12	KORLOY 5 Competitor 2 0 3 6 EA
	Connecting Rod (Din CK35) (AISI 1035)	CNMM 250924-HH CNMM 866-HH	V=90 f=1.3 d=10~20 V=300 f=0.06 d=0.4~0.8	KORLOY 2 Competitor 1 0 1.5 3 EA
	Gear (SCR420H - KS)	TCGT 16T304-HFP TCGT 32.51-HFP	V=240 f=0.1~0.2 d=0.15 V=787 f=0.004~0.008 d=0.0059	KORLOY 900 Competitor 400 0 500 1000 EA
	Bussing (SS20C - KS)	CCMT 060204-HMP CCMT 21.51-HMP	V=110 f=0.2 d=0.8 V=361 f=0.0079 d=0.031	KORLOY 70 Competitor 50 0 50 0 50

HEAD OFFICE

1606-2, Seocho 1-Dong, Seocho-Gu, Seoul, Korea TEL:+82 2 522 3181 FAX:+82 2 522 3184

CHEONGJU FACTORY

53-16, Songjeong-Dong, Hungduk-Gu, Chengju, Chungcheongbuk-Do, Korea TEL:+82 43 262 0141 FAX:+82 43 262 0146

JINCHEON FACTORY

767-1, Guangheawon-Ri, Guangheawon-Myon, Jincheon-Gun, Chungcheongbuk-Do, Korea TEL:+82 43 535 0141 FAX:+82 43 535 0144

WEB : www.korloy.com

E-MAIL : export@korloy.com